Fun4All TPC Material and Digitization

Matt Posik

Temple University

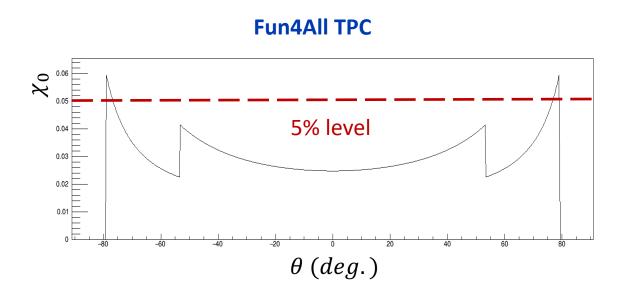
April 24, 2020

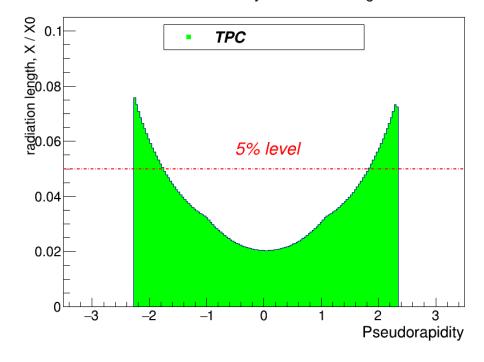
Fun4All TPC Digitization

- ☐ Fun4All TPC: https://github.com/sPHENIX-Collaboration/macros/macros/G4_Svtx_maps_ladder_....C
- TPC Performance Parameters (gas dependent)
 - \circ Smear to mimic avalanche $\sigma_T = 300 \ \mu m$ constant for all gasses
 - Drift velocity
 - Transverse diffusion
 - o Long. Diffusion
 - \circ dEdX
 - Number of primaries / cm
 - Number of total / cm
 - Electrons per keV = Number of total / dEdx
- ☐ TPC readout shaping time and ADC clock parameters set the Z size of the TPC cells
 - o ADC clock = 53.0 ns (18.8 MHz ADC clock rate
 - Shaping RMS lead = 32.0 ns and Shaping RMS tail = 48.0 ns (based on 80 ns SAMPA)
 - Cell Z = ACD clock * Drift velocity
 - Smear R- $\phi = 0.25$ and Z smear =0.15 fudge parameters tuned to give avg. $150 \ \mu m \ r \phi$ and $500 \ \mu m \ Z$ resolutions (outer TPC layers)

Fun4All TPC Digitization

- ☐ Predefined gas selections what are the 100 numbers?
 - Ne2K (100, 400)
 - NeCF4 (100, 300, 400) simulation selection (ether)
 - By hand setting
 - O Simulation default gas sPHENIX_TPC_Gas: Ne(90%) CF4(10%) defined in g4main/PHG4Reco.cc
- Support material
 - $\circ \quad \text{Inner/outer cage: } L = 211 \ cm, \ \chi_0 = \chi_0^{Kapton} * \chi_0^{Material}, \chi_0^{Material} = 1.13 \times 10^{-2}, \chi_0^{Kapton} = 28.6 \ cm$
 - o Inner field cage R = 20 cm, Outer field cage R = 78 cm
 - Readout radius = 30 cm
- Active Gas layers (16 layers per section, each layer 1.25 cm thick)
 - o Inner: 30-40 cm, r-phi count = 1152
 - Mid: 40-60 cm, r-phi count = 1536
 - \circ Outer: 60 78 cm, r-phi count = 2304 r-phi counts?
- "Fast Simulation" appears to not use the gas dependent parameters etc. Resolutions are
 - \circ Radial resolution = 1 cm, phi-res = 200 μm , long-res = 500 μm

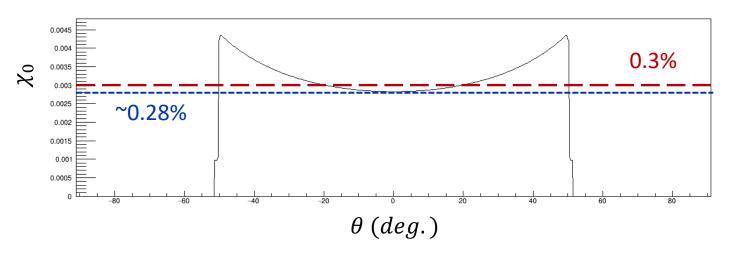


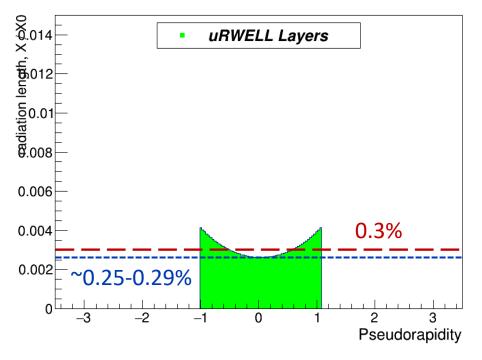


Fun4All TPC Material

 \Box "Fast Simulation" TPC material scan ($\theta = 0^0 \rightarrow 90^0$ to beamline)

EIC Detector Geometry: Radiation Length Scan




Fun4All $\mu RWell$ Material @ 80 cm

Fun4All (3 cm drift gap)

EicRoot (1.5 cm drift gap)

EIC Detector Geometry: Radiation Length Scan

Fun4All Next Steps

- ☐ What to focus study on in Fun4All
 - Fast Simulations
 - Validation between EicRoot and Fun4All?
 - What setup to validate?
 - Repeat studies of TPC and TPC + MPGDs and then add forward trackers?
 - Micro-Rwell material
 - > Add simple support structure material?
 - > Implement multiple hit capability (e.g. several sensitive layers)
 - Full simulation
 - > In addition to micro-Rwell material updates also need to define a digitization
 - Implement u v readout

